EECS 861 Homework 8

- 1. Explain the difference between strict sense stationarity and wide sense stationarity.
- 2. X(t) is a wide sense stationary zero mean, Gaussian random processes with a power spectral density of $S_X(f)=sinc^2(f)$. [Hint: see Homework 7-problem 5]
 - a. Find E[X(0.1)] and Var[X(0.1)], E[X(0.6)] and Var[X(0.6)]
 - b. What is the distribution of X(0.1)?
 - c. Find P(X(0.1)>1)
 - d. What is the covariance matrix for X(0.1) and X(0.6)?
 - e. What is the joint distribution of X(0.1) and X(0.6)?
 - f. Find P(X(0.6)>1|X(0.1)=1)
 - g. Find P(X(5)>1|X(0.1)=1)
- 3. Determine whether the following functions can be the power spectral density for a WSS real valued random process (YES or NO).
 - a) 5*rect*(5*f*)
 - b) 100Λ(10f)
 - c) Λ(10(f-1000))
 - d) $10e^{-\pi(f-10)^2}$
 - e) $e^{-|f|}$
 - f) $\delta(f) + \sin(200\pi f)$
 - g) $\delta(f) + 6\delta(f+10) + 6\delta(f-10)$
- 4. The random process X(t) is WSS. For each of the autocorrelation functions below find the corresponding power spectral density, $S_X(f)$. If $R_{XX}(\tau)$ does not have periodic components then find the E[X] and Var[X]
 - a) $R_{XX}(\tau) = 64e^{-\pi (\frac{\tau}{0.5})^2}$ b) $R_{XX}(\tau) = 64e^{-|\frac{\tau}{0.5}|}$ c) $R_{XX}(\tau) = 64\Lambda(\frac{\tau}{0.5})$ d) $R_{XX}(\tau) = 64\cos(2000\pi\tau)$

5. A power spectral density for a WSS random process X(t) is

$$S_X(f) = (.016)\Lambda(\frac{f}{100kHz})$$

- a) Find the power in the DC term.
- b) Find $E[X^2(t)]$
- c) Find the % power the band [0, 20 kHz]
- 6. Chapter 3: Problem 3.22
- 7. Chapter 3: Problem 3.23 a